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Abstract. The spectra of both two- and three-magnon excitations in Heisenberg spin chains
with next-nearest-neighbour (NNN) interactions are studied using scaling methods and the
recursion method respectively. Both two-spin and three-spin couplings are considered for general
spin S. In the three-magnon case, the asymptotic behaviour of the recursion coefficients can
be used to directly identify the presence of bound states in the spectrum. Both integrable and
non-integrable models can be studied, and the integrable models display special features in the
bound-state spectra. Our results for the three-magnon bound states=ofl chains differ
appreciably from those obtained in previous studies based upon an integral equation approach.

1. Introduction

Themulti-magnon spectrum of generalized spifdeisenberg chains with nearest-neighbour
interactions has recently been studied using the recursion method [1, 2]. The approach
involved expressing the-magnon Schirdinger equation in a tight-binding form which takes

the form of a semi-infinite chain for the two-magnon case [3] and a semi-infinite triangular
net for the three-magnon problem. In the latter case, the recursion method was used to
transform this net to a semi-infinite inhomogeneous chain, and the resulting tridiagonal
form could then be used to provide a continued-fraction representation of the density of
states. The spectrum of the general Hamiltonian consists of bound states and two distinct
types of scattering state. These latter solutions correspond to excitations propagating in the
bulk or along the surface of the triangular net whereas the bound states are localized states.
Special features of the bound states were associated with integrable cases of the general
model. Bethe [4] first showed how to obtain the eigenvalues and eigenvectors of the
S = 1/2 Heisenberg chain using a method which is now called the Batkatz However,

this method of solution can only be used for the integrable models [5-10]. When the
spin S # % or second-neighbour interactions are added, the model is no longer integrable
and the Betheansatzcannot be used. Tsvelik [11] has consideredSaa= 1/2 model

with both nearest-neighbour interactions and a second-neighbour three-spin coupling. This
model remains integrable for all values of the couplings but is not integrabl§ fer%.
Grabowski and Mathieu [12] have constructed all the quantum integrals of motion for the
isotropic Heisenbergd = 1/2 chain, and the model with NNN two-spin interactions is
integrable if a four-spin term is also included.

§ To whom any correspondence should be addressed.
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In the case of a ferromagnetic ground state, the one-magnon and two-magnon problems
can be solved exactly [13] for any range of interaction using a variety of methods. However,
there have been very few papers which have considered multi-magnon excitations in systems
with NNN interactions. The two-magnon spectrum with second-neighbour interactions has
been investigated for th6 = 1/2 Heisenberg Hamiltonian [14—18] using both analytic
and numerical methods. Bound states exist both below and above the scattering-state
continuum. Kadolkaret al [19] have recently studied the three-magnon spectrum of the
S = 1 Heisenberg model with NNN interactions. Their method is based upon the integral
equation approach used by Millet and Kaplan [20]. However, the method seems to produce
spurious solutions as was also the casesSfer 1/2 in the work of Millet and Kaplan.

In the present work we describe a different method for calculating three-magnon
excitations in ferromagnets with NNN interactions [21]. Our approach to the three-magnon
problem maps it exactly onto an effective tight-binding Hamiltonian. In the next section we
outline our method of solution, and our results for the multi-magnon excitation spectrum of
various spinS models are given in section 3.

2. The model

We consider the following Hamiltonian with interactions beyond nearest neighbours:

N
H=-n) 8- Sia—h) S-Sia—JY Si1-(SixSi) (1)

i i i=1
where theS; are guantum spins located at the sites of a uniform chain with lattice spacing
a. The ferromagnetic state with alV spins parallel is an exact eigenstate of (1) with
energyEy = —(J1 + Jo)N S%. We shall study the excitation spectrum of (1) relative to this
ferromagnetic state.

The one-magnon excitation energy is given by

E1 = (28J1 + 482 J3sinka) (1 — coska) + 28 J»(1 — cos Za) 2)

wherek is a wavevector in the ranger/a < k < /a. In order for the second-neighbour
couplings not to frustrate the system, we have restrictions on the allowed values of the
dimensionless ratiog = J,/J; andy = 2S|J3|/J:;. We assume/; > 0, and the condition

that £; > 0 is equivalent to & 28 + sign(8)/482+y2>0if B #0,0ry < 1if B =0.

For the caser = 0, the former condition reduces > —211.

2.1. Two-magnon excitations

In general, the two-magnon problem is soluble in any dimension, since it reduces to
essentially a defect problem ondadimensional lattice. Fod = 1 Majumdar [14] has
studied the Hamiltonian (1) withi; = 0 for § = % and Bahurmuz and Loly [17] have
studied the same problem for bosh= 1 and§ = % We will extend these studies of the
two-magnon problem to the general case/¢fhon-zero and for general.

The two-magnon excitations are solutions of the 8dhrger equation which can be

written in terms of the basis of two-spin deviation states
li, j) = S;°5;"10) (i <)) ®3)
where|0) represents the ferromagnetic state with all spins aligned in the negatiivection.

Using the translational invariance of the Hamiltonian, we transform to a mixed orthonormal
basis|K; r), whereK represents the total wavevector of the pair and |j — i| represents
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Figure 1. The two-magnon excitation spectrum showing the bound-state branch (solid line) and
the scattering-state continuum (shaded region) forSthe % Tsvelik model withy = %. The
energy is in units of 2J; and the wavevectok is in units ofr/a.

the relative separation of the spin deviations. In this mixed basis, thé&@ober equation
for the amplitudes, has a tight-binding form:

(E — So)Co = V()C]_ + VéCQ
(E —e1)cr = Voco + Vica + Vies

(E —e2)co = Vico+ Vicr+ Vea+ Viey “)
(E—¢)e,=V'e, 204+ Ver_1+ Ve, i1+ Ve r>2
where the tight-binding parameters are given by
g0 =4S(J1+ J2)
e1=(4S —1)J1 + 25J2(2—cosK) + 25J3(1 — S) sinkK
g2 =4S + (45 — 1) J>
e =45J1+4SJ,
Vo= —2/S @25 — D cosg + 4SJ3msm§ o

Vo =—-2VS(2S —1)J,cosK — 25J3/S (2S5 — 1) sinK

K . K
Vi=-25/; cosE + 25128 —1)J;3 smE

K . K
V =-2S8J; cos— + 452, sin

V' = —2§J,c0sK — 252J3SinkK.
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Figure 2. The two-magnon excitation spectrum showing the bound-state branch (solid line),
the scattering-state continuum (shaded region) and the resonances (dashed linesy ferthe
Tsvelik model withy = 3. The energy is in units of ®/; and the wavevectok is in units of

w/a.

Equations (4) and (5) describe interactions between two magnons, and the bound-state
solutions can be obtained using a real-space rescaling method [3]. The basic idea of
the method is to perform a transformation on the equations which eliminates a fraction
of the degrees of freedom but leaves the equations invariant in form with renormalized
parameters. At certain values 8f K, 8 and y, the equations in (4) reduce to a nearest-
neighbour problem, and analytic results for the bound-state energies can be obtained using
the expressions in [3]. However, in general both nearest- and next-nearest-neighbour
interactions are present. Using site 0 as a reference, the amplitydes. .., ¢,_1 can
be eliminated from (4) to obtain the rescaled equations

(E — &o)co = Vocp + Vicas

(E — &1)cp = Voco + Vica, + Ve

(E — &2)cap = Vieo + Viey + Vegy + Ve

(E—=%)e, =V +Ver_p+ Vergs + ‘7/6,-+2b r>2b

which now involve only the amplitudes, ¢;, ¢2, . .. for some integeb > 1. The forms

for the rescaled (tilded) parameters in terms of the original parameters are quite complicated
and will be published separately [22]. They depend on the choidg bt in the limit

b — oo all interactions approach zero and then any statesayith O correspond t& = &.

The same method can also be applied to any of the other coefficiemtg4).

(6)
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Figure 3. The recursion coefficients, (solid curve) and, (dashed curve) as a function of the
indexn in the case wher§ = 1, K = 7/a, 8 = 0.18 andy = 0.

Using this approach the spectral properties of the two-magnon excitations can be found
for any values ofK, S, 8 andy. Our results for cases with # 0, y = 0 agree with the
previous work cited above. We simply illustrate here some typical spectra for cases with
y # 0. Figure 1 shows the excitation spectrum for the= 1/2 model withg = 0 and
y = 3/4. This is an integrable model for all values pf and the bound state can enter
the continuum of scattering states without broadening into a resonance. Figure 2 shows the
excitation spectrum fo§ = 1, 8 = 0 andy = 1/2. This model is no longer integrable
and the bound state now broadens into a resonance when it enters the continuum. These
features are important differences between integrable and non-integrable spin models and
can be used as a means of identifying integrable cases.

The information about the two-magnon spectrum will be used below to describe the
scattering-state solutions of the three-magnon excitations.

2.2. Three-magnon excitations

The three-magnon excitations are solutions of the &tihger equation, which can be
written in the basis of three-spin deviation states:

Ir,l,m) = S+S;"S;"0) (r <1< m). @)
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Using centre-of-mass and relative coordinates for the sitésand m, we can express
the Hamiltonian in a mixed orthonormal bagi&; x, y), where K represents the total
wavevector of the three-magnon state and= || — r| andy = |m — [| represent the
relative separation of the spin deviations in units of the lattice spacinén this mixed
basis the Sclidinger equation for the ket amplitudes can be expressed in the following
tight-binding form:

(E — 8xy)ny = Z A(,'\}ycx+i,y+j (8)
ij

where the right-hand side generally involves twelve terms. The coefficigntand Aij

are defined in table 1. The relationships between these tight-binding parameters and the
Hamiltonian are given in table 2. The parameters are complex functions of the total
momentumK of the three-magnon state. In tablel* represents the complex conjugate

of U and in table 2 the variable = €X</3,
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Figure 4. The three-magnon spectrum of tife= % B = 0, y = 0 Heisenberg model with
energy in units of 3J; and K in units of 7 /a. The shaded areas represent the two overlapping
scattering-state continua and the solid line below the continua indicates a bound state.

The system of equations (8) corresponds to a semi-infinite triangular lattice with a
surface along the positive- and y-axes. Thex = 0, y = 0 surfaces describe states where
two deviations are on the same site and the origin corresponds to the state with three
deviations on the same site. In general, a 6itgy) interacts with six nearest neighbours
(denoted by the unprimeds) and with six next-nearest neighbours (denoted by the primed
Us).
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Table 1. Coefficients for the three-magnon equations (> 2).

A7

X,y &y -1,0 01 1-1 1,0 0-1 -1,1 -20 02 2-2 20 0-2 -22
0,0 ¢o O Up O us 0 0 0 Uy O U 0 0
0,1 ¢n O Us U us Uy 0 0 U, 0 Uy 0 0
1,0 e1 Uo U, 0 Uy 0 ur o0 U, 0 Ui 0 0
1,1 en U Us Us U: U U O uoo u* 0 0
0,2 e O Uy Us U; U} O 0 Uy U U} U 0O
2,0 ep Us Us O U 0 Ui U, U, 0 Ui o0 U
1,2 2 Us Ug Us U, U: U O uoou, u* Uy 0
2,1 12 Us U Us U§ Ui U: U, uoo u* 0 Uy

2,2 o2 Uio U Uio U* Ufo Ufo U, U U, U* UZ* Uz*

Os eo O Uz Us Uy Ui 0 0 Uy U, Uy U O

10 g0 Uz Us O U 0 Us U, U, 0 Ui 0 Uy
1s e, Us Ug U U Ui U: O U ' U u* o

rnl ey Us U Us U§ U; Uy U uoo u* 0 U
2s ey U U U U*  U* Uy U, uou Ut U Uy
n2 e U U Uo U U, U U uoou, u* Uy U*
rs g0 U u u v vt Ut U uvoou vt Ut Ut

In order to obtain information about the spectral properties of the general Hamiltonian
in (1), we have used the recursion method [23] to transform this triangular system to a
semi-infinite chain. This provides a continued-fraction representation of the local Green’s
function which can easily be used to calculate the local density of states. The method is
based on a three-term recurrence relation of the form

ﬁlun> = bylup—1) + aylu,) + bpyalunya) (9)

wherea,, b, € R and|u,) is thenth state of an arbitrary complete orthonormal set of states.
To start the procedure we defifwe ;) = 0 and choose some arbitrary normalized member
lug) of the three-magnon basis. Then, from (9)) is given by

brlua) = Hluo) — doluo) (10)
with

ao = (uolHluo) ~ bF = {uoH?luo) — af. (11)
Once we have the first two states we can use (9) to generate the rest. We have

bayalitnia) = Hlu) — blun-1) — aylus) (12)
where

an = (| Hln) b7y = (ualHlu) — a = b (13)

By iterating this procedure the set of stafés,)} can be found which will transform the
Hamiltonian to the desired canonical form, and the resulting tridiagonal matrix will contain
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Table 2. Three-magnon tight-binding parameters.

g0 6S(J1+J2)

go1  €o0— 2J1

€11 go0— 21— J2

g02  €00— 2J2

12 go0—J1— 2

&1 €00 — J1

g2 g00— J2

U —8J1 —2icS§273

Up —¢/3S(S—1)(J1 + 2iSTa)

Ui =S —1)J1—*8Jp —2iS(2S — )i J3 — iS22 — 8)¢2J3

Uy  —¢/S@S—1J1—¢*/S@2S —1)Jp —iSV/S2S — )¢ J3
—i(S — 1)/S(2S — )¢ J3 —i(S — 1)y/S(2S — ¢T3

Us —CS)h—iS2c3+iS2— )¢ J3

Us —/8@2S —1)(J1+iSJ3+i(S — 1 J3)

Us —(SJ—C*STo—iS20J3 —iS(S — 1) J3
—iS(S — 123

Us —¢SJ1—2iS(S — )¢ J3

Uy —¢SJ— 2i52§ J3

Us  —C/S2S = 1)(J1 + 2iSTa)

Ug  —SJL—C*STp —2i820 J3 —iS(S — 1)¢2J3

Ug —CSJ—i8%003—iS(S— 1) Js

U =Sl +i5%¢23

Uy — —¢V/3S(S— 1o +iSy/3S(S — 1)¢2rs

Ul —¢@2S—1)J—iS@2S— 12/

Uy —¢/S(2S -1 +iSy/S@S - 1)¢2

Uy  —(Sh+iS%%0

thea, andb, as

its elements. In the new basis the Hamiltonian satisfies

|uo) ag by o)
| lua) by a1 b 0 |2e1)
H jup) | = by a» b3 uz) (14)
0

and corresponds to an inhomogeneous nearest-neighbour tight-binding chain. The precise
values of then, andb, generated will depend upon the choice of initial ket.

For the infinite system of equations represented by (8), the recursion process continues
indefinitely and this raises the question of when and how to stop the procedure. There are
a number of possibilities [24, 25, 26] for the behaviour of the and b, -coefficients as a
function of n. The coefficients may approach constants, approach some kind of periodic
oscillation or behave in a more complicated fashion. The asymptotic form for the coefficients
is determined by the scattering states of the spectrum. If these states are composed of
overlapping continua with no gaps, then the coefficients approach constant values which are



Multi-magnon excitations 4789

Energy
5

4
3
3% R TLLTLEIRTS L
SR R S S HSRITS
SSERIERRIIRRAS RSB
2oleletnlolteloleteotetedetetaturu u o e eTeteletoletorelote oot eletotulolo a0 e e
RS e o S SRS ECRICIIIERERKS
L I R O  IRRRAALLS
oot tete e et e e te e e tetetutesetelslatotetetatetetetetetotetetetot et e s te 0 eted
S S S ERSRSCRERILS,
o R S0 RS RRSREARELS
B O e e e e e e s et e ot ol tutetotuletetotototetotetalototolstoelototed
0 O SRR RIS
Jotsratetetetatateletalololelsletotelotutotoretetetelnteteteltetetele e tutototetel
2 IR0 S e R SO SRS ASCREES
S S SOOI LIRS
0 S S S S0 S SIS SRR
RIHRLRAKS
2 e A S SO IR
Joturetatetetatatotololotoletetetoletotetototetetetolotetolete et e o tetetetetetel
e e e O e s e S a OO
o¥e%stetetelstetetototetatetotitetotelstetetotetototetotototetotetetotototeteletole
DO O e 0 o L e T e e g e e e e e e o e e e e S s ST e et
e ey ot e e e e T e o et e g e o LN el i tedetetetetetotatel
e g o g e S N e eSSty e o e
SIS S IR IR R RTRACLS
O e e e e e e e e et esetete b o te e e tetetoe LIRS
1 B R IR R R R R RIRAS S
otasasetetetetetetetetatetetetotetetetels!
1, 9,.0,0.0.0.0.0.9,0.9.9,0.0.0.0.9.0,
O S Se Sasase St et e teSetatetete
a%6Seteotetetetototetetetetotetess!
oratatatetotatatetelatototaletolete’”’
DRI HSIERTRHRS
1000 0 00 0 0 0 0 000 00 S %,
B IRREESCKS
otatetototetatetetoteiatetetetst:
10500, 0,0.0.0.0.9.9. .00
OO S tetasetete e tetetess!
ototedetetetotetotetotete?s
OSSR
SO0
S OSSP TEIS I
ESCRRRLEDS
SOOI
SRR
JoSeseteetete’
K Lo
QR
0122
0.00 0.25 0.50 0.75 1.00

Wavevector K

Figure 5. The three-magnon spectrum of tlfe= % B = 1 Heisenberg case with energy in
units of 25J1(1+ B) and K in units of 7 /a. The shaded areas represent the two overlapping
scattering-state continua, the solid lines below the continua indicate the bound states and the
dashed line indicates a resonance.

determined by the maximum and minimum values of the overlapping continua as follows:

a — (Emax+ Emin)/2
b — (Emax— Emin)/4.

For the three-magnon case, these continua have energies equal to either the sum of three
free magnons or two bound and one free. Bor 1/2 there can be more than one two-
magnon bound-state branch and there is a continuum corresponding to each branch. If the
superposition of the continua leads to internal gaps in the continuum, then the asymptotic
form of the coefficients can be more complicated [26] and will depend upon the values of
the energies at the edges of the gaps as well. In each case, once the asymptotic behaviour
is reached, the iteration process can be terminated and the remaining coefficients can be
obtained using the asymptotic form. In our case, knowledge of the complete two-magnon
spectrum is all that is required to predict this behaviour.

The local density of states corresponding to the initial iggetan be obtained directly
from the continued-fraction representation of the Green’s function in terms of the coefficients
a, andb,. The information about both the one- and two-magnon spectra allows the regions
of the three-magnon continua to be easily identified. The three-magnon density of states can
then be used to identify the location of bound states. Each set of coefficients is calculated
at a fixed value ofK and the information obtained in this way can then be combined to

(15)
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Figure 6. The three-magnon spectrum of thie= % y = lintegrable model with energy in units
of 2§J; andK in units of 7 /a. The shaded areas represent the two overlapping scattering-state
continua and the solid line indicates the bound state.

show the dispersion curve for the bound-state branches. The method can be applied to the
general Hamiltonian in (1) as it does not require the model to be integrable.

Southernet al [1] have shown that the presence of bound states can also be detected
from the behaviour of the coefficients in the asymptotic region. Figure 3 shows an example
of the recursion coefficients obtained for the case wifere 1, K = n/a, = 0.18 and
y = 0. The coefficients appear to approach constant values consistent with the minimum
and maximum energies of the three-magnon continua as predicted from the one- and two-
magnon solutions. However, there are pulse-like deviations from these values which occur
periodically. These pulses are a direct result of a loss of orthogonality of the new basis states
which is dependent upon the numerical precision used. The net effect is that the bound states
become a narrow band with a width determined by this precision. The coefficients behave
as if there is a gap between the continua and the bound states and the amplitude of the
pulses is a direct measure of this gap. Hence the number of pulses and their amplitudes can
be used to directly identify the presence and location of bound states outside the continua.
The coefficients in figure 3 indicate the presence of two bound states below the continua.

In the following section we present the results of our calculations. We will only consider
the cases with eithe$ = 0 or y = 0, but the spin magnitud§ is arbitrary.
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Figure 7. The three-magnon spectrum for tlfe= 1, 8 = 0 Heisenberg case with energy in

units of 25J1 and K in units of 7 /a. The shaded areas represent the two overlapping scattering-
state continua, the solid lines below the continua indicate the bound states, and the dashed line
indicates the resonance.

3. Results

3.1. TheS = } Heisenberg case/(= 0)

The three-magnon spectrum of the integrable= % B = 0 Heisenberg case is shown

in figure 4 for the case wherg = 0. The shading slanted to the left indicates the
two-bound—one-free-magnon continuum, the shading to the right indicates the three-free-
magnons continuum and the cross-hatched region indicates where the two continua overlap.
The solid line below the continua indicates a bound state. These results completely agree
with those obtained by Bethe [4] using amsatzfor the three-particle wavefunction. If
y # 0, the model remains integrable but the excitation energies are no longer even functions
of K. However, wheny = 0, we can restrict our consideration to positive valuekof

For negative values o8, the first- and second-neighbour couplings compete and the
three-magnon energies all decrease, with an instability first occurring KiearO when
B < —211. However, asB increases from zero, a resonance begins to appear inside the
continuum and eventually emerges as an additional bound state below the continuum for a
small range off at intermediate values df. The 8 = 1 case is shown in figure 5 where
the second bound state is weakly bound in the region Rear 0.657/a. As § increases
further this upper bound state moves back inside the continuum. In thedimit co we
have a chain with only second-neighbour interactions and the model is again integrable.
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Figure 8. The three-magnon spectrum of tfe= 1, 8 — oo Heisenberg case with energy in

units of 25J1(1+ B) and K in units of w/a. The shaded areas represent the two overlapping
scattering-state continua, the solid lines below the continua indicate the bound states and the
dashed line indicates the resonance.

A characteristic property of integrable models is that the bound-state branches can pass
through the continua without becoming resonances. Our results indicate that th% spin-
Heisenberg case is not integrable foe~ 0.

3.2. TheS = } integrable casef = 0)

Wheny # 0, the three-spin coupling in (1) introduces an asymmetry betwdgén Positive

and negative values of both lead to competing effects and we can restrict our consideration
toy > 0. Asy increases from zero the lower continuum edge decreases in energy, with the
bound state entering the continuum first néar= +7/a and eventually for intermediate
values ofK. Figure 6 shows the spectrum where= 1. The bound states do not broaden

into resonances inside the continua. These results confirm the general features of integrable
models: bound states and scattering states can exist at the same energy but are completely
decoupled. As one moves away from integrability, the bound states inside the continuum
should broaden into resonances.

3.3. TheS = 1 Heisenberg case/ (= 0)

The three-magnon results for th® = 1 Heisenberg case are shown in figure 7 for
B = 0. This case was discussed in detail by Southetral [1]. The shaded region is
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Figure 9. The three-magnon spectrum of tie= 1, y = 1 NNN model with energy in units
of 2§J; andK in units of r/a. The shaded areas represent the two overlapping scattering-state
continua and the dashed lines indicate the resonances.

the scattering-state continuum (shading slanted to the left indicates the two-bound-one-
free-magnon continuum, and shading slanted to the right indicates the three-free-magnons
continuum), the solid lines below the continuum indicate the bound states, and the dashed
line indicates a resonance. The energies of the bound stafés=atr/a agree fairly well

with the energies found by Millet and Kaplan [20] and Kadolkar, Ghosh and Sarma [19]
using an integral equation approach. We find two bound states below the continuum: the
lower state exists across the entire Brillouin zone but the upper enters the continuum near
K = 7n/a and becomes a resonance. The energies of our lower bound-state branch agree
with those of Kadolkar, Ghosh and Sarma, but they find that the upper bound state is present
for all K-values in disagreement with our results. This difference may be due to their method
of discretizing the integral equations with the result that the two-bound—-one-free-magnon
continuum may be indistinguishable from a true bound state.

Kadolkaret al did not consider the case of NNN interactions which compete with the
nearest-neighbour terms. A% decreases from zero the lower continuum edge and the
bound-state energies all decrease. got —211 the energies neak = 0 become negative.

As B increases from zero we find that the upper bound state’s randé @écreases
and eventually disappears at abgut- 0.21. At a larger value o8 ~ 0.266, the lower
bound state begins to touch the continuumkKat= 7 /a but exists for all O< K < n/a.

As B — oo (figure 8), the upper bound state emerges from the continuum at valugs of
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closer toK = m/2a, and we simply have thg = 0 case with the lattice distance doubled.
These results do not agree with those reported previously by Kadellalr[19]. For all

B > 0, we find that only the lower bound-state branch exists fokallThe upper branch

is present neak = xr/a for small 8 and nearKk = n/2a for large values ofs. However,

this upper branch always enters the scattering-state continuum and becomes a resonance.

3.4. TheS = 1 NNN case g = 0)

TheS = 1, y = 0 Heisenberg case, shown in figure 7, has two bound statekneat-r /a.

The upper bound state enters the continuum eaf +0.97/a and becomes a resonance,

and the lower bound state exists for all valueskot£ 0. As y increases the upper state
completely enters the continuum and becomes a resonance for all valkesTdfe lower

bound state enters the continuum néar= +x/a and also becomes a resonance. This
behaviour differs from that in thd = % case and is due to the non-integrability of the

S =1 model. Wheny is increased to one (figure 9), the lower bound state has completely
entered the continuum, so there are two resonances inside the continuum. As the NNN term
drives the ferromagnetic state towards instability, the bound states disappear.

4. Summary

We have studied the nature of both two-magnon and three-magnon excitations in spin-
S Heisenberg chains with interactions which extend beyond nearest neighbours. In the
two-magnon case, scaling methods can be used to extract general features of the spectrum
including both bound and scattering states. For the three-magnon case, the recursion method
can be used to study the complete spectrum. The termination of the continued fraction can
be performed using the knowledge of the two-magnon spectrum. Special features of the
excitations are associated with the integrable models.

Our results for the three-magnon excitations of the= 1 Heisenberg model with
second-neighbour interactions are different from those reported previously by Kadoblkar
al [19]. We believe that their method of discretizing the integral equations does not allow
the two-bound—one-free-magnon continuum to be distinguished from a true bound state.
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