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Multi-magnon excitations in Heisenberg spin-S chains with
next-nearest-neighbour interactions
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† Department of Physics, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
‡ Department of Mathematics, King’s College, The Strand, London WC2R 2LS, UK

Received 12 March 1996

Abstract. The spectra of both two- and three-magnon excitations in Heisenberg spin chains
with next-nearest-neighbour (NNN) interactions are studied using scaling methods and the
recursion method respectively. Both two-spin and three-spin couplings are considered for general
spin S. In the three-magnon case, the asymptotic behaviour of the recursion coefficients can
be used to directly identify the presence of bound states in the spectrum. Both integrable and
non-integrable models can be studied, and the integrable models display special features in the
bound-state spectra. Our results for the three-magnon bound states ofS = 1 chains differ
appreciably from those obtained in previous studies based upon an integral equation approach.

1. Introduction

Themulti-magnon spectrum of generalized spin-S Heisenberg chains with nearest-neighbour
interactions has recently been studied using the recursion method [1, 2]. The approach
involved expressing them-magnon Schr̈odinger equation in a tight-binding form which takes
the form of a semi-infinite chain for the two-magnon case [3] and a semi-infinite triangular
net for the three-magnon problem. In the latter case, the recursion method was used to
transform this net to a semi-infinite inhomogeneous chain, and the resulting tridiagonal
form could then be used to provide a continued-fraction representation of the density of
states. The spectrum of the general Hamiltonian consists of bound states and two distinct
types of scattering state. These latter solutions correspond to excitations propagating in the
bulk or along the surface of the triangular net whereas the bound states are localized states.
Special features of the bound states were associated with integrable cases of the general
model. Bethe [4] first showed how to obtain the eigenvalues and eigenvectors of the
S = 1/2 Heisenberg chain using a method which is now called the Betheansatz. However,
this method of solution can only be used for the integrable models [5–10]. When the
spin S 6= 1

2 or second-neighbour interactions are added, the model is no longer integrable
and the Betheansatzcannot be used. Tsvelik [11] has considered anS = 1/2 model
with both nearest-neighbour interactions and a second-neighbour three-spin coupling. This
model remains integrable for all values of the couplings but is not integrable forS > 1

2.
Grabowski and Mathieu [12] have constructed all the quantum integrals of motion for the
isotropic HeisenbergS = 1/2 chain, and the model with NNN two-spin interactions is
integrable if a four-spin term is also included.

§ To whom any correspondence should be addressed.
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In the case of a ferromagnetic ground state, the one-magnon and two-magnon problems
can be solved exactly [13] for any range of interaction using a variety of methods. However,
there have been very few papers which have considered multi-magnon excitations in systems
with NNN interactions. The two-magnon spectrum with second-neighbour interactions has
been investigated for theS = 1/2 Heisenberg Hamiltonian [14–18] using both analytic
and numerical methods. Bound states exist both below and above the scattering-state
continuum. Kadolkaret al [19] have recently studied the three-magnon spectrum of the
S = 1 Heisenberg model with NNN interactions. Their method is based upon the integral
equation approach used by Millet and Kaplan [20]. However, the method seems to produce
spurious solutions as was also the case forS = 1/2 in the work of Millet and Kaplan.

In the present work we describe a different method for calculating three-magnon
excitations in ferromagnets with NNN interactions [21]. Our approach to the three-magnon
problem maps it exactly onto an effective tight-binding Hamiltonian. In the next section we
outline our method of solution, and our results for the multi-magnon excitation spectrum of
various spin-S models are given in section 3.

2. The model

We consider the following Hamiltonian with interactions beyond nearest neighbours:

Ĥ = −J1

∑
i

S̃i · S̃i+1 − J2

∑
i

S̃i · S̃i+2 − J3

N∑
i=1

S̃i−1 · (S̃i × S̃i+1) (1)

where theS̃i are quantum spins located at the sites of a uniform chain with lattice spacing
a. The ferromagnetic state with allN spins parallel is an exact eigenstate of (1) with
energyE0 = −(J1 + J2)NS2. We shall study the excitation spectrum of (1) relative to this
ferromagnetic state.

The one-magnon excitation energy is given by

E1 = (2SJ1 + 4S2J3 sinka)(1 − coska) + 2SJ2(1 − cos 2ka) (2)

wherek is a wavevector in the range−π/a 6 k 6 π/a. In order for the second-neighbour
couplings not to frustrate the system, we have restrictions on the allowed values of the
dimensionless ratiosβ = J2/J1 andγ = 2S|J3|/J1. We assumeJ1 > 0, and the condition
that E1 > 0 is equivalent to 1+ 2β + sign(β)

√
4β2 + γ 2 > 0 if β 6= 0, or γ 6 1 if β = 0.

For the caseγ = 0, the former condition reduces toβ > − 1
4.

2.1. Two-magnon excitations

In general, the two-magnon problem is soluble in any dimension, since it reduces to
essentially a defect problem on ad-dimensional lattice. Ford = 1 Majumdar [14] has
studied the Hamiltonian (1) withJ3 = 0 for S = 1

2, and Bahurmuz and Loly [17] have
studied the same problem for bothS = 1 andS = 1

2. We will extend these studies of the
two-magnon problem to the general case ofJ3 non-zero and for generalS.

The two-magnon excitations are solutions of the Schrödinger equation which can be
written in terms of the basis of two-spin deviation states

|i, j〉 = S+
i S+

j |0〉 (i 6 j). (3)

where|0〉 represents the ferromagnetic state with all spins aligned in the negativez-direction.
Using the translational invariance of the Hamiltonian, we transform to a mixed orthonormal
basis|K; r〉, whereK represents the total wavevector of the pair andr = |j − i| represents
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Figure 1. The two-magnon excitation spectrum showing the bound-state branch (solid line) and
the scattering-state continuum (shaded region) for theS = 1

2 Tsvelik model withγ = 3
4 . The

energy is in units of 2SJ1 and the wavevectorK is in units ofπ/a.

the relative separation of the spin deviations. In this mixed basis, the Schrödinger equation
for the amplitudescr has a tight-binding form:

(E − ε0)c0 = V0c1 + V ′
0c2

(E − ε1)c1 = V0c0 + V1c2 + V ′c3

(E − ε2)c2 = V ′
0c0 + V1c1 + V c3 + V ′c4

(E − ε )cr = V ′cr−2 + V cr−1 + V cr+1 + V ′cr+2 (r > 2)

 (4)

where the tight-binding parameters are given by

ε0 = 4S(J1 + J2)

ε1 = (4S − 1)J1 + 2SJ2(2 − cosK) + 2SJ3(1 − S) sinK

ε2 = 4SJ1 + (4S − 1)J2

ε = 4SJ1 + 4SJ2

V0 = −2
√

S (2S − 1)J1 cos
K

2
+ 4SJ3

√
S (2S − 1) sin

K

2
V ′

0 = −2
√

S (2S − 1)J2 cosK − 2SJ3

√
S (2S − 1) sinK

V1 = −2SJ1 cos
K

2
+ 2S(2S − 1)J3 sin

K

2

V = −2SJ1 cos
K

2
+ 4S2J3 sin

K

2
V ′ = −2SJ2 cosK − 2S2J3 sinK.



(5)
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Figure 2. The two-magnon excitation spectrum showing the bound-state branch (solid line),
the scattering-state continuum (shaded region) and the resonances (dashed lines) for theS = 1
Tsvelik model withγ = 1

2 . The energy is in units of 2SJ1 and the wavevectorK is in units of
π/a.

Equations (4) and (5) describe interactions between two magnons, and the bound-state
solutions can be obtained using a real-space rescaling method [3]. The basic idea of
the method is to perform a transformation on the equations which eliminates a fraction
of the degrees of freedom but leaves the equations invariant in form with renormalized
parameters. At certain values ofS, K, β and γ , the equations in (4) reduce to a nearest-
neighbour problem, and analytic results for the bound-state energies can be obtained using
the expressions in [3]. However, in general both nearest- and next-nearest-neighbour
interactions are present. Using site 0 as a reference, the amplitudesc1, c2, . . . , cb−1 can
be eliminated from (4) to obtain the rescaled equations

(E − ε̃0)c0 = Ṽ0cb + Ṽ ′
0c2b

(E − ε̃1)cb = Ṽ0c0 + Ṽ1c2b + Ṽ ′c3b

(E − ε̃2)c2b = Ṽ ′
0c0 + Ṽ1cb + Ṽ c3b + Ṽ ′c4b

(E − ε̃ )cr = Ṽ ′cr−2b + Ṽ cr−b + Ṽ cr+b + Ṽ ′cr+2b r > 2b

 (6)

which now involve only the amplitudesc0, cb, c2b, . . . for some integerb > 1. The forms
for the rescaled (tilded) parameters in terms of the original parameters are quite complicated
and will be published separately [22]. They depend on the choice ofb, but in the limit
b → ∞ all interactions approach zero and then any states withc0 6= 0 correspond toE = ε̃0.
The same method can also be applied to any of the other coefficientsci in (4).
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Figure 3. The recursion coefficientsan (solid curve) andbn (dashed curve) as a function of the
index n in the case whereS = 1, K = π/a, β = 0.18 andγ = 0.

Using this approach the spectral properties of the two-magnon excitations can be found
for any values ofK, S, β andγ . Our results for cases withβ 6= 0, γ = 0 agree with the
previous work cited above. We simply illustrate here some typical spectra for cases with
γ 6= 0. Figure 1 shows the excitation spectrum for theS = 1/2 model withβ = 0 and
γ = 3/4. This is an integrable model for all values ofγ , and the bound state can enter
the continuum of scattering states without broadening into a resonance. Figure 2 shows the
excitation spectrum forS = 1, β = 0 andγ = 1/2. This model is no longer integrable
and the bound state now broadens into a resonance when it enters the continuum. These
features are important differences between integrable and non-integrable spin models and
can be used as a means of identifying integrable cases.

The information about the two-magnon spectrum will be used below to describe the
scattering-state solutions of the three-magnon excitations.

2.2. Three-magnon excitations

The three-magnon excitations are solutions of the Schrödinger equation, which can be
written in the basis of three-spin deviation states:

|r, l, m〉 = S+
r S+

l S+
m |0〉 (r 6 l 6 m). (7)
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Using centre-of-mass and relative coordinates for the sitesr, l and m, we can express
the Hamiltonian in a mixed orthonormal basis|K; x, y〉, where K represents the total
wavevector of the three-magnon state andx = |l − r| and y = |m − l| represent the
relative separation of the spin deviations in units of the lattice spacinga. In this mixed
basis the Schrödinger equation for the ket amplitudescxy can be expressed in the following
tight-binding form:

(E − εxy)cxy =
∑
i,j

A
xy

ij cx+i,y+j (8)

where the right-hand side generally involves twelve terms. The coefficientsεxy and A
xy

ij

are defined in table 1. The relationships between these tight-binding parameters and the
Hamiltonian are given in table 2. The parameters are complex functions of the total
momentumK of the three-magnon state. In table 1,U ∗ represents the complex conjugate
of U and in table 2 the variableζ = eiKa/3.

Figure 4. The three-magnon spectrum of theS = 1
2 , β = 0, γ = 0 Heisenberg model with

energy in units of 2SJ1 andK in units ofπ/a. The shaded areas represent the two overlapping
scattering-state continua and the solid line below the continua indicates a bound state.

The system of equations (8) corresponds to a semi-infinite triangular lattice with a
surface along the positivex- andy-axes. Thex = 0, y = 0 surfaces describe states where
two deviations are on the same site and the origin corresponds to the state with three
deviations on the same site. In general, a site(x, y) interacts with six nearest neighbours
(denoted by the unprimedUs) and with six next-nearest neighbours (denoted by the primed
Us).
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Table 1. Coefficients for the three-magnon equations (r, s > 2).

A
xy

i,j

x, y εxy −1, 0 0, 1 1,−1 1, 0 0,−1 −1, 1 −2, 0 0, 2 2,−2 2, 0 0,−2 −2, 2

0, 0 ε00 0 U0 0 U∗
0 0 0 0 U

′
0 0 U

′∗
0 0 0

0, 1 ε01 0 U3 U1 U∗
2 U∗

0 0 0 U
′
3 0 U

′∗
2 0 0

1, 0 ε01 U0 U2 0 U∗
3 0 U∗

1 0 U
′
2 0 U

′∗
3 0 0

1, 1 ε11 U2 U5 U4 U∗
5 U∗

2 U∗
4 0 U

′
0 U

′∗ 0 0

0, 2 ε02 0 U7 U4 U∗
8 U∗

3 0 0 U
′
3 U

′
1 U

′∗
2 U

′∗
0 0

2, 0 ε02 U3 U8 0 U∗
7 0 U∗

4 U
′
0 U

′
2 0 U

′∗
3 0 U

′∗
1

1, 2 ε12 U8 U9 U6 U∗
10 U∗

5 U∗
8 0 U

′
U

′
2 U

′∗ U
′∗
2 0

2, 1 ε12 U5 U10 U8 U∗
9 U∗

8 U∗
6 U

′
2 U

′
0 U

′∗ 0 U
′∗
2

2, 2 ε02 U10 U U10 U∗ U∗
10 U∗

10 U
′
2 U

′
U

′
2 U

′∗ U
′∗
2 U

′∗
2

0, s ε00 0 U7 U8 U∗
8 U∗

7 0 0 U
′
3 U

′
2 U

′∗
2 U

′∗
3 0

r, 0 ε00 U7 U8 0 U∗
7 0 U∗

8 U
′
3 U

′
2 0 U

′∗
3 0 U

′∗
2

1, s ε1s U8 U9 U10 U∗
10 U∗

9 U∗
8 0 U

′
U

′
U

′∗ U
′∗ 0

r, 1 ε1s U9 U10 U8 U∗
9 U∗

8 U∗
10 U

′
U

′
0 U

′∗ 0 U
′∗

2, s ε2s U10 U U U∗ U∗ U∗
10 U

′
2 U

′
U

′
U

′∗ U
′∗ U

′∗
2

r, 2 ε2s U U U10 U∗ U∗
10 U∗ U

′
U

′
U

′
2 U

′∗ U
′∗
2 U

′∗

r, s ε00 U U U U∗ U∗ U∗ U
′

U
′

U
′

U
′∗ U

′∗ U
′∗

In order to obtain information about the spectral properties of the general Hamiltonian
in (1), we have used the recursion method [23] to transform this triangular system to a
semi-infinite chain. This provides a continued-fraction representation of the local Green’s
function which can easily be used to calculate the local density of states. The method is
based on a three-term recurrence relation of the form

Ĥ|un〉 = bn|un−1〉 + an|un〉 + bn+1|un+1〉 (9)

wherean, bn ∈ R and|un〉 is thenth state of an arbitrary complete orthonormal set of states.
To start the procedure we define|u−1〉 ≡ 0 and choose some arbitrary normalized member
|u0〉 of the three-magnon basis. Then, from (9),|u1〉 is given by

b1|u1〉 = Ĥ|u0〉 − a0|u0〉 (10)

with

a0 = 〈u0|Ĥ|u0〉 b2
1 = 〈u0|Ĥ2|u0〉 − a2

0. (11)

Once we have the first two states we can use (9) to generate the rest. We have

bn+1|un+1〉 = Ĥ|un〉 − bn|un−1〉 − an|un〉 (12)

where

an = 〈un|Ĥ|un〉 b2
n+1 = 〈un|Ĥ2|un〉 − a2

n − b2
n. (13)

By iterating this procedure the set of states{|un〉} can be found which will transform the
Hamiltonian to the desired canonical form, and the resulting tridiagonal matrix will contain
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Table 2. Three-magnon tight-binding parameters.

ε00 6S(J1 + J2)

ε01 ε00 − 2J1

ε11 ε00 − 2J1 − J2

ε02 ε00 − 2J2

ε12 ε00 − J1 − J2

ε1s ε00 − J1

ε2s ε00 − J2

U −ζSJ1 − 2iζS2J3

U0 −ζ
√

3S(S − 1)(J1 + 2iSJ3)

U1 −ζ(2S − 1)J1 − ζ ∗SJ2 − 2iS(2S − 1)ζJ3 − iS(2 − S)ζ 2J3

U2 −ζ
√

S(2S − 1)J1 − ζ ∗√S(2S − 1)J2 − iS
√

S(2S − 1)ζJ3

−i(S − 1)
√

S(2S − 1)ζJ3 − i(S − 1)
√

S(2S − 1)ζ 2J3

U3 −ζSJ1 − iS2ζJ3 + iS(2 − S)ζJ3

U4 −ζ
√

S(2S − 1)(J1 + iSJ3 + i(S − 1)J3)

U5 −ζSJ1 − ζ ∗SJ2 − iS2ζJ3 − iS(S − 1)ζJ3

−iS(S − 1)ζ 2J3

U6 −ζSJ1 − 2iS(S − 1)ζJ3

U7 −ζSJ1 − 2iS2ζJ3

U8 −ζ
√

S(2S − 1)(J1 + 2iSJ3)

U9 −ζSJ1 − ζ ∗SJ2 − 2iS2ζJ3 − iS(S − 1)ζ 2J3

U10 −ζSJ1 − iS2ζJ3 − iS(S − 1)ζJ3

U
′ −ζSJ2 + iS2ζ 2J3

U
′
0 −ζ

√
3S(S − 1)J2 + iS

√
3S(S − 1)ζ 2J3

U
′
1 −ζ(2S − 1)J2 − iS(2S − 1)ζ 2J3

U
′
2 −ζ

√
S(2S − 1)J2 + iS

√
S(2S − 1)ζ 2J3

U
′
3 −ζSJ2 + iS2ζ 2J3

the an andbn as its elements. In the new basis the Hamiltonian satisfies

Ĥ


|u0〉
|u1〉
|u2〉

...

 =


a0 b1

b1 a1 b2

b2 a2 b3

0

0
. . .




|u0〉
|u1〉
|u2〉

...

 (14)

and corresponds to an inhomogeneous nearest-neighbour tight-binding chain. The precise
values of thean andbn generated will depend upon the choice of initial ket.

For the infinite system of equations represented by (8), the recursion process continues
indefinitely and this raises the question of when and how to stop the procedure. There are
a number of possibilities [24, 25, 26] for the behaviour of thean- andbn-coefficients as a
function of n. The coefficients may approach constants, approach some kind of periodic
oscillation or behave in a more complicated fashion. The asymptotic form for the coefficients
is determined by the scattering states of the spectrum. If these states are composed of
overlapping continua with no gaps, then the coefficients approach constant values which are
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Figure 5. The three-magnon spectrum of theS = 1
2 , β = 1 Heisenberg case with energy in

units of 2SJ1(1 + β) andK in units of π/a. The shaded areas represent the two overlapping
scattering-state continua, the solid lines below the continua indicate the bound states and the
dashed line indicates a resonance.

determined by the maximum and minimum values of the overlapping continua as follows:

a → (Emax + Emin)/2

b → (Emax − Emin)/4.
(15)

For the three-magnon case, these continua have energies equal to either the sum of three
free magnons or two bound and one free. ForS > 1/2 there can be more than one two-
magnon bound-state branch and there is a continuum corresponding to each branch. If the
superposition of the continua leads to internal gaps in the continuum, then the asymptotic
form of the coefficients can be more complicated [26] and will depend upon the values of
the energies at the edges of the gaps as well. In each case, once the asymptotic behaviour
is reached, the iteration process can be terminated and the remaining coefficients can be
obtained using the asymptotic form. In our case, knowledge of the complete two-magnon
spectrum is all that is required to predict this behaviour.

The local density of states corresponding to the initial ketu0 can be obtained directly
from the continued-fraction representation of the Green’s function in terms of the coefficients
an andbn. The information about both the one- and two-magnon spectra allows the regions
of the three-magnon continua to be easily identified. The three-magnon density of states can
then be used to identify the location of bound states. Each set of coefficients is calculated
at a fixed value ofK and the information obtained in this way can then be combined to
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Figure 6. The three-magnon spectrum of theS = 1
2 , γ = 1 integrable model with energy in units

of 2SJ1 andK in units ofπ/a. The shaded areas represent the two overlapping scattering-state
continua and the solid line indicates the bound state.

show the dispersion curve for the bound-state branches. The method can be applied to the
general Hamiltonian in (1) as it does not require the model to be integrable.

Southernet al [1] have shown that the presence of bound states can also be detected
from the behaviour of the coefficients in the asymptotic region. Figure 3 shows an example
of the recursion coefficients obtained for the case whereS = 1, K = π/a, β = 0.18 and
γ = 0. The coefficients appear to approach constant values consistent with the minimum
and maximum energies of the three-magnon continua as predicted from the one- and two-
magnon solutions. However, there are pulse-like deviations from these values which occur
periodically. These pulses are a direct result of a loss of orthogonality of the new basis states
which is dependent upon the numerical precision used. The net effect is that the bound states
become a narrow band with a width determined by this precision. The coefficients behave
as if there is a gap between the continua and the bound states and the amplitude of the
pulses is a direct measure of this gap. Hence the number of pulses and their amplitudes can
be used to directly identify the presence and location of bound states outside the continua.
The coefficients in figure 3 indicate the presence of two bound states below the continua.

In the following section we present the results of our calculations. We will only consider
the cases with eitherβ = 0 or γ = 0, but the spin magnitudeS is arbitrary.
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Figure 7. The three-magnon spectrum for theS = 1, β = 0 Heisenberg case with energy in
units of 2SJ1 andK in units ofπ/a. The shaded areas represent the two overlapping scattering-
state continua, the solid lines below the continua indicate the bound states, and the dashed line
indicates the resonance.

3. Results

3.1. TheS = 1
2 Heisenberg case (γ = 0)

The three-magnon spectrum of the integrableS = 1
2, β = 0 Heisenberg case is shown

in figure 4 for the case whereγ = 0. The shading slanted to the left indicates the
two-bound–one-free-magnon continuum, the shading to the right indicates the three-free-
magnons continuum and the cross-hatched region indicates where the two continua overlap.
The solid line below the continua indicates a bound state. These results completely agree
with those obtained by Bethe [4] using anansatzfor the three-particle wavefunction. If
γ 6= 0, the model remains integrable but the excitation energies are no longer even functions
of K. However, whenγ = 0, we can restrict our consideration to positive values ofK.

For negative values ofβ, the first- and second-neighbour couplings compete and the
three-magnon energies all decrease, with an instability first occurring nearK = 0 when
β < − 1

4. However, asβ increases from zero, a resonance begins to appear inside the
continuum and eventually emerges as an additional bound state below the continuum for a
small range ofβ at intermediate values ofK. The β = 1 case is shown in figure 5 where
the second bound state is weakly bound in the region nearK = 0.65π/a. As β increases
further this upper bound state moves back inside the continuum. In the limitβ → ∞ we
have a chain with only second-neighbour interactions and the model is again integrable.
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Figure 8. The three-magnon spectrum of theS = 1, β → ∞ Heisenberg case with energy in
units of 2SJ1(1 + β) andK in units of π/a. The shaded areas represent the two overlapping
scattering-state continua, the solid lines below the continua indicate the bound states and the
dashed line indicates the resonance.

A characteristic property of integrable models is that the bound-state branches can pass
through the continua without becoming resonances. Our results indicate that the spin-1

2
Heisenberg case is not integrable forβ 6= 0.

3.2. TheS = 1
2 integrable case (β = 0)

Whenγ 6= 0, the three-spin coupling in (1) introduces an asymmetry between±K. Positive
and negative values ofγ both lead to competing effects and we can restrict our consideration
to γ > 0. Asγ increases from zero the lower continuum edge decreases in energy, with the
bound state entering the continuum first nearK = ±π/a and eventually for intermediate
values ofK. Figure 6 shows the spectrum whereγ = 1. The bound states do not broaden
into resonances inside the continua. These results confirm the general features of integrable
models: bound states and scattering states can exist at the same energy but are completely
decoupled. As one moves away from integrability, the bound states inside the continuum
should broaden into resonances.

3.3. TheS = 1 Heisenberg case (γ = 0)

The three-magnon results for theS = 1 Heisenberg case are shown in figure 7 for
β = 0. This case was discussed in detail by Southernet al [1]. The shaded region is
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Figure 9. The three-magnon spectrum of theS = 1, γ = 1 NNN model with energy in units
of 2SJ1 andK in units ofπ/a. The shaded areas represent the two overlapping scattering-state
continua and the dashed lines indicate the resonances.

the scattering-state continuum (shading slanted to the left indicates the two-bound–one-
free-magnon continuum, and shading slanted to the right indicates the three-free-magnons
continuum), the solid lines below the continuum indicate the bound states, and the dashed
line indicates a resonance. The energies of the bound states atK = π/a agree fairly well
with the energies found by Millet and Kaplan [20] and Kadolkar, Ghosh and Sarma [19]
using an integral equation approach. We find two bound states below the continuum: the
lower state exists across the entire Brillouin zone but the upper enters the continuum near
K = π/a and becomes a resonance. The energies of our lower bound-state branch agree
with those of Kadolkar, Ghosh and Sarma, but they find that the upper bound state is present
for all K-values in disagreement with our results. This difference may be due to their method
of discretizing the integral equations with the result that the two-bound–one-free-magnon
continuum may be indistinguishable from a true bound state.

Kadolkar et al did not consider the case of NNN interactions which compete with the
nearest-neighbour terms. Asβ decreases from zero the lower continuum edge and the
bound-state energies all decrease. Forβ < − 1

4 the energies nearK = 0 become negative.
As β increases from zero we find that the upper bound state’s range ofK decreases

and eventually disappears at aboutβ ∼ 0.21. At a larger value ofβ ∼ 0.266, the lower
bound state begins to touch the continuum atK = π/a but exists for all 0< K < π/a.
As β → ∞ (figure 8), the upper bound state emerges from the continuum at values ofK
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closer toK = π/2a, and we simply have theβ = 0 case with the lattice distance doubled.
These results do not agree with those reported previously by Kadolkaret al [19]. For all
β > 0, we find that only the lower bound-state branch exists for allK. The upper branch
is present nearK = π/a for small β and nearK = π/2a for large values ofβ. However,
this upper branch always enters the scattering-state continuum and becomes a resonance.

3.4. TheS = 1 NNN case (β = 0)

TheS = 1, γ = 0 Heisenberg case, shown in figure 7, has two bound states nearK = ±π/a.
The upper bound state enters the continuum nearK = ±0.9π/a and becomes a resonance,
and the lower bound state exists for all values ofK 6= 0. As γ increases the upper state
completely enters the continuum and becomes a resonance for all values ofK. The lower
bound state enters the continuum nearK = ±π/a and also becomes a resonance. This
behaviour differs from that in theS = 1

2 case and is due to the non-integrability of the
S = 1 model. Whenγ is increased to one (figure 9), the lower bound state has completely
entered the continuum, so there are two resonances inside the continuum. As the NNN term
drives the ferromagnetic state towards instability, the bound states disappear.

4. Summary

We have studied the nature of both two-magnon and three-magnon excitations in spin-
S Heisenberg chains with interactions which extend beyond nearest neighbours. In the
two-magnon case, scaling methods can be used to extract general features of the spectrum
including both bound and scattering states. For the three-magnon case, the recursion method
can be used to study the complete spectrum. The termination of the continued fraction can
be performed using the knowledge of the two-magnon spectrum. Special features of the
excitations are associated with the integrable models.

Our results for the three-magnon excitations of theS = 1 Heisenberg model with
second-neighbour interactions are different from those reported previously by Kadolkaret
al [19]. We believe that their method of discretizing the integral equations does not allow
the two-bound–one-free-magnon continuum to be distinguished from a true bound state.

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of
Canada. Two of the authors (BWS) and (DAL) also acknowledge the support of NATO
under Research Grant No 0087/87.

References

[1] Southern B W, Lee R J and Lavis D A 1994J. Phys.: Condens. Matter6 10 075
[2] Lee R J 1992 Three magnon excitations in one dimensional quantum spin chainsMSc ThesisUniversity of

Manitoba
[3] Southern B W, Liu T S and Lavis D A 1989Phys. Rev.B 39 12 160
[4] Bethe H A 1931Z. Phys.71 205
[5] Sutherland B 1975Phys. Rev.B 12 3795
[6] Takhtajan L A 1982 Phys. Lett.87A 479
[7] Babujian H M 1982Phys. Lett.90A 479
[8] Parkinson J B 1988J. Phys. C: Solid State Phys.21 3793
[9] Batchelor M T and Barber M N 1990 J. Phys. A: Math. Gen.23 L15



Multi-magnon excitations 4795

[10] Izyumov Yu A and Skryabin Yu N 1988Statistical Mechanics of Magnetically Ordered Systems(New York:
Plenum) pp 197–295

[11] Tsvelik A M 1990 Phys. Rev.42 779
[12] Grabowski M P and Mathieu P 1994Mod. Phys. Lett.A 9 2197
[13] Wortis M 1963Phys. Rev.132 85
[14] Majumdar C K 1969J. Math. Phys.10 177
[15] One I, Mikado S and Oguchi T 1971J. Phys. Soc. Japan30 358
[16] Gochev I G 1973Theor. Math. Phys.15 402
[17] Bahurmuz A A and Loly P D 1986J. Phys. C: Solid State Phys.19 2241
[18] Tonegawa T and Harada I 1989J. Phys. Soc. Japan58 2902
[19] Kadolkar C, Ghosh D K and Sarma C R 1992J. Phys.: Condens. Matter4 9651
[20] Mille t P J and Kaplan H 1974Phys. Rev.B 10 3923
[21] Cyr S L M 1994 Multi-magnon excitations in one-dimensional quantum spin chains with NNN interactions

MSc ThesisUniversity of Manitoba
[22] Lavis D A and Southern B W, unpublished
[23] Haydock R 1980 The recursive solution of the Schrödinger equationSolid State Physicsvol 35 (New York:

Academic) p 215
[24] Hodges C H 1977J. Physique Lett.38 L187
[25] Magnus A 1979 Recurrence coefficients for orthogonal polynomials on connected and non-connected sets
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